
Operational PNML: Towards a PNML

Support for Model Construction and

Modification

João Paulo Barros1,2∗and Lúıs Gomes1

{jpb,lugo}@uninova.pt
1Universidade Nova de Lisboa/UNINOVA

Campus da FCT, P-2829-516 Monte de Caparica – Portugal
2Instituto Politécnico de Beja – Portugal

Abstract

The Petri Net Markup Language (PNML) allows the specification
of Petri net models based on their primitive elements: places, transi-
tion, and arcs. This paper proposes a complementary way to define
Petri net models, based on a set of operations on nets. This ap-
proach allows the construction and modification of Petri net models
in a highly flexible way supporting not only modular composition, but
also model modifications.

1 Introduction

It is a well-known fact that Petri net models are often difficult to use in prac-
tice due to the problem of rapid model growth. This fact has been the sub-
ject of numerous proposals that are able to reduce the graphical models’ size
(e.g. [1,4–8,10,11,15]). Those proposals are in fact abstraction constructs al-
lowing information hiding: the subnets hide part of their inner details. Here,
we propose the use of two generic operations for the specification of model
composition and modification, named net addition and net subtraction. The
operations are proposed as a complementary way for the definition of Petri
net Models by the Petri net Markup Language (PNML) [3,12,16,18]: besides

∗Work partially supported by a PRODEP III grant (Concurso 2/5.3/ PRODEP/2001,
ref. 188.011/01).

the exhaustive enumeration of all Petri net elements, we get a way to define
new nets by operations on existent nets. Net addition (one of the operations)
can support the two well-known approaches to model’s construction, namely:

1. top-down model construction by net refinements

2. bottom-up model construction by net aggregation (specifying environ-
ments for the existent model).

These two composition types are commonly found in literature, even if
with different names and presentations, and are implemented in numerous
tools.

From an engineering perspective, we can think of a third type of net mod-
ification supported by the net addition operation: as in point 2 above, the
model is modified by immersing it in another model; yet, this is not seen as a
bottom-up construction where one model module grows by connecting it to
another, but as the modification of one or more existent model modules by
a single new module. This new module imposes structural and behavioural
modifications to all the modified modules. This corresponds to the realisa-
tion, at the net level, of crosscutting requirements [1,13,17]. To this end we
can use the proposed operations, which can compose, in an orthogonal way,
the existing nets or modules.

Several tools specify the structure definition of the whole model by an-
notations added to the net components. These annotations establish the
connection among the several pages or modules. For example: node fusion
is specified by annotating one node with the identifier of another node in the
same or in a different subnet.

Differently, we propose a total separation between the composition in-
formation and the net components annotations. A new net can be defined
by describing the way other nets are related. This net definition is based
on operations that refer to the set of operand nets. This allows the quick
specification of a large net model without any kind of graphical editing: we
simply specify the textual expressions composing the nets; the original nets
definitions remain exactly the same.

The proposed operations are both amenable to a simple textual repre-
sentation to be made available by tools. This allows the representation, in a
compact and readable format, of a large number of net compositions. These
can be seen as contributing either to system development or to future modi-
fication of a ”completed” system.

The net addition and net subtraction operations, here presented, gener-
alise a previous version [1] by supporting non disjoint fusion sets, and operate

on net instances as presented in [9] and formally defined elsewhere [2]. They
are currently restricted to low-level nets. Future work will investigate their
generalisation to high-level nets.

The following section briefly presents where our proposal fits in the PNML
concept. Thereafter, the operations are defined while presenting illustrative
examples.

1.1 From PNML to Operational PNML

The Petri Net Markup Language (PNML) defines Petri nets based on an
exhaustive enumeration of all the primitive Petri net elements. For example,
for the net in Fig. 1a 1 we have the PNML in Listing 1. More specifically, this
PNML code is called basic PNML to distinguish it from Structured PNML
[3, 12,16,18]. The latter uses pages and reference nodes.

�����

���

�	� ��

�
�

������

�	

���

�����

��������� ���� 	!#"�$%���

&(')*'

+ �#�-,-"�.����

�0/��213�) �

�54

��6

�0���

7 '

Figure 1: a)Net Producer; b)Net Store; c)Net Consumer.

Listing 1: PNML code for Producer net in Fig. 1a
<pnml xmlns=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pnml/ptNetb”>

<net id=”Producer ” type=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pntd/ptNetb”>
<p lace id=”p1”>

<i n i t i a lMa rk i ng>

5 <t ex t>0</text>
</ i n i t i a lMa rk i ng>

</p lace>

<p lace id=”p2”>
<i n i t i a lMa rk i ng>

10 <t ex t>1</text>
</ i n i t i a lMa rk i ng>

</p lace>

<t r a n s i t i o n id=”produce”>
<name>

15 <t ex t>produce</text>
</name>

</ t r a n s i t i o n>

<t r a n s i t i o n id=”put”>

1The dotted rectangles enclosing each net in Fig. 1 have no special meaning: they are
only used to better identify a single net as defined in the PNML specification.

<name>
20 <t ex t>put</text>

</name>
</ t r a n s i t i o n>

<arc id=”a1 ” source=”produce ” t a r g e t=”p1”>
<i n s c r i p t i o n>

25 <t ex t>1</text>
</ i n s c r i p t i o n>

</arc>
<arc id=”a2 ” source=”p1 ” ta r g e t=”put”>

<i n s c r i p t i o n>

30 <t ex t>1</text>
</ i n s c r i p t i o n>

</arc>
<arc id=”a3 ” source=”put ” t a r g e t=”p2”>

<i n s c r i p t i o n>

35 <t ex t>1</text>
</ i n s c r i p t i o n>

</arc>
<arc id=”a4 ” source=”p2 ” ta r g e t=”produce”>

<i n s c r i p t i o n>

40 <t ex t>1</text>
</ i n s c r i p t i o n>

</arc>
</net>

</pnml>

We will not use graphical information in the PNML code (e.g. the PNML
graphics element) as it is irrelevant for the purpose of this paper. We also
do not rely on any specific Petri net Type definition (PNTD): the (to be
presented) operations only deal with the net structure. Yet, we do use the
Place/Transition PNTD for testing purposes.

Currently, there are two PNML based ways to compose Petri net models:

1. Using Structured PNML: each net becomes a page and each page can
then reference the other pages through the use of place references, tran-
sition references, or both.

2. Using Modular PNML [14,18]: each net becomes a module. Each mod-
ule can then specify an implementation part and an interface part, with
import nodes (reference nodes), output ports (a subset of the true, non
reference, nodes). The modules are connected through the import and
export nodes, only.

Structured PNML offers a simple way to partition a single net model in
several sub-models referencing each other: each node in a single page can
be a reference to another node in another page. We thus have nodes and
reference nodes. The resulting model fuses each reference node with a real
node resulting in a single real node. The modeller still has to know the
unique large model, resulting from all the references among pages.

Although translatable to structured PNML, modular PNML is quite dif-
ferent as it allows the creation of several independent instances of a given net

model (the module). In this sense modular PNML fulfils the usual reusabil-
ity criteria that each module should be usable in several distinct contexts,
possibly at the same time, by means of multiple instances. Furthermore, the
module designer does not have to know the contexts where the module is
going to be used, but only the module functionality.

In this paper we propose an additional approach where each net can be
defined in any of the two following forms:

1. The net is defined by exhaustive enumeration of all its elements, using
basic PNML.

2. The net is defined as a set of operations on other nets and, possibly,
their instances.

The first form corresponds to the use of basic PNML: the net has no ref-
erence nodes or any other construct able to specify some form of connection
or interface to other nets or pages. The use of Structured PNML or Opera-
tional PNML also seems a straightforward, and potentially useful, ”natural”
extension for the first form.

Complementarily to the first form, in the second form, the net is specified
through a set of operations on existent nets and net instances. The defined
net is the result of one, and only one, operation in the set: the one that
returns it.

Using a set theory analogy, we can say the first form defines nets by
extension (listing all its elements), while the second form defines a Petri net
by comprehension.

We call the basic PNML complemented with the second form for net
definitions Operational PNML.

Using Operational PNML it is possible to define Petri net models as
an arbitrarily complex sequence of operations on any number of other net
instances. These operations include net addition, a generalisation of net
composition by node fusion, but also subtraction allowing the inverse modi-
fications. Other operations can certainly be defined but we restrict to these,
as we believe they are highly generic, intuitive, and offer an implicit structure
for all modifications (either additive, or subtractive) as their operands are
also nets.

The following section illustrates, in an informal and example-based way,
the use of the Operational PNML concept through the presentation of the
two referred operations.

2 The Operational PNML specification

This section details the already presented second form for net specification.
This is achieved by means of an example based approach for each of the
proposed net operations. The examples show the corresponding Operational
PNML code. The section ends by briefly presenting the RELAX NG gram-
mar for Operational PNML.

We start by informally defining net vectors, net instances, and node in-
dexes. After, we present fusion sets followed by the proposed operations.
Finally, we highlight the main differences to the basic PNML grammar.

2.1 Net instances and node indexes

When using Operational PNML, each net defined as in basic PNML (e.g.
Listing 1) is also seen as a template from which other identical nets, named
net instances, can be generated. These instances are always seen as elements
in a net vector. For example, from net Store (see Fig. 1b) we can generate
a net vector with three elements 1 to 3. These vector elements (or net
Store instances) are denoted by suffixing the respective instance number to
the net Store identifier. For example, for net vector Store[1 . . . 3] we get
three nets: Store[1], Store[2], and Store[3]. Additionally, all nodes in a net
instance need to refer the net instance as a prefix. For example, nodes in net
Store[1] initially identified by the respective identifier (id), become identified
by the net instance 1 followed by the identifier, with a dot as a separator:
Store[1].in, Store[1].p3, Store[1].p4, and Store[1].out.

As exemplified latter, it is also potentially useful to refer to a set of
net nodes by index. For this reason, we also propose the use of indexes in
the nodeIDs. The index is made part of the node identifier (nodeID) and
appears between square brackets: for example, nodes out of Store instances
can be referred by (Store[i].out) where i is the index and, in this case, also
an iterator variable between to given values: first and last (see Listing 6 for
an example). This does not imply a modification to the node.content define
in the PNML grammar, but it does imply processing the nodeID attribute
when iterators are used.

2.2 Fusion sets

A set of nodes to be fused is called a fusion set. These are of two kinds:
placeFusion (when all elements of the set are places) and transitionFusion
(when all elements of the set are transitions). In Operational PNML, each
node to be fused is specified by referring the net instance (it belongs to) and

the node identifier. Each fusion set will correspond to a single node in the
resulting net. Hence, there is a nodeID attribute allowing the specification
of an identifier, possibly containing indexes for the generated node. Listing
2 shows the Operational PNML RELAX NG grammar for the placeFusion
and transitionFusion specifications.

Listing 2: The transitionFusion and placeFusion elements in the Operational
PNML RELAX NG grammar.

<de f i n e name=”t r an s i t i onFu s i on . element”>
<element name=”t r an s i t i onFu s i on”>

<r e f name=”t r an s i t i onFu s i on . content”/>

205 </element>
</de f i n e>

<de f i n e name=”placeFus ion . element”>
<element name=”placeFus ion”>

<r e f name=”placeFus ion . content”/>

210 </element>
</de f i n e>

<de f i n e name=”t r an s i t i onFu s i on . content”>
<a t t r i b u t e name=”nodeID”>

<data type=”token”/>

215 </a t t r i b u t e>

<oneOrMore>
<r e f name=”t r an s i t i o nRe f ”/>

</oneOrMore>
</de f i n e>

220 <de f i n e name=”placeFus ion . content”>
<a t t r i b u t e name=”nodeID”>

<data type=”token”/>

</a t t r i b u t e>

<oneOrMore>
225 <r e f name=”placeRef”/>

</oneOrMore>
</de f i n e>

We can also specify fusion set vectors: placeFusionVector and transition-
FusionVector (see Listing 3). As the name implies, a fusion set vector is a
compact notation for a list of fusion sets. Each fusion set vector has an asso-
ciated iterator variable (iterator attribute) and an associated range specified
by the first and last attributes. It also has the nodeID attribute to name the
generated nodes. The list of fusion sets is generated by the iteration of the
iterator variable across the values in the range. Each iteration corresponds
to a fusion set with the respective value for the iterator variable. The index
for the generated nodes can be the iterator variable (or even a function of
it). This allows the generation of multiple nodes with distinct indexes (see
Listing 6 for an example).

Listing 3: The fusion set vector element in the Operational PNML RELAX
NG grammar.

<de f i n e name=”placeFus ionVector . element”>
<element name=”placeFus ionVector”>

230 <a t t r i b u t e name=” i t e r a t o r ”>

<data type=”NMTOKEN”/>

</a t t r i b u t e>

<a t t r i b u t e name=” f i r s t ”>
<data type=”nonNegat iveInteger”/>

235 </a t t r i b u t e>

<a t t r i b u t e name=” l a s t ”>
<data type=”nonNegat iveInteger”/>

</a t t r i b u t e>

<r e f name=”placeFus ion . content”/>

240 </element>
</de f i n e>

<de f i n e name=”t ran s i t i onFus i onVec to r . element”>
<element name=”t ran s i t i onFus i onVec to r”>

<a t t r i b u t e name=” i t e r a t o r ”>
245 <data type=”NMTOKEN”/>

</a t t r i b u t e>

<a t t r i b u t e name=” f i r s t ”>
<data type=”nonNegat iveInteger”/>

</a t t r i b u t e>

250 <a t t r i b u t e name=” l a s t ”>
<data type=”nonNegat iveInteger”/>

</a t t r i b u t e>

<r e f name=”t r an s i t i onFu s i on . content”/>

</element>
255 </de f i n e>

Next we present, through examples, the net addition and the net sub-
traction operations. Both use fusion sets and fusion set vectors.

2.3 Operations

We now present the two proposed operations. The use of operations for the
definition of Petri net models by Operational PNML is based on the following
six points:

1. At least one net must be defined as in basic PNML (by extension).
Although certainly possible, we do not propose any way to define a net
in the absence of primitive nets.

2. The operations, defining a new net, operate on a specified set of net
instances (the operand nets).

3. We can define vectors of nets instances based on existent nets.

4. Net instances are nets identified by the identifier (id) of the originator
net and a non negative integer called the net instance number.

5. The nodes in net instances are identified by the net id, the net instance
number, and the id of the original node.

6. The result of each operation is a net, which can be used in another
operation. The set of operations defining a net is partially ordered, as

the result of some operations can be an operand for other operations.
There must be one, and only one, operation that returns the defined
net. This is specified in the proposed PNML extension by giving the
name ”return” to the resulting net.

Next, we present the two operations by referring to examples of the re-
spective PNML code.

2.3.1 Net Addition

Net addition without fusion sets defines a disjoint union of two nets: they
remain disconnected. Listing 4 shows the disjoint union of nets Producer
and Store.

Listing 4: Net defined as a disjoint union of two other nets (net addition
operation).
<pnml xmlns=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pnml/ptNetb”>

<net id=”ProducerAndStore”
type=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pntd/ptNetb”>

<ope ra t i on s>
5 <add i t i on r e s u l t=”return”>

<net netID=”Producer”/>

<net netID=”Store”/>

</add i t i on>

</ope ra t i on s>
10 </net>

</pnml>

This first Operational PNML example already illustrates the main dis-
tinctive points compared to basic PNML:

1. Only the inside of the net element is (radically) changed; it now con-
tains, exclusively, a new element named operations. This element can
contain any number of operations. In the presented example, it contains
a single operation identified by the element addition, which includes a
list of operand nets (nets Producer and Store in the example). This
nets are defined as separated basic PNML files with the same name as
the one specified by the netID attribute.

2. All operations have an attribute named result. This attribute specifies
the name of the resulting net. Inside the operations element one and
only one operation must give the name return to the respective result
attribute; that operation defines the net. In Listing 4 we have a single
operation and thus it must return the respective result by specifying
”return” as the value for its result attribute. But, for example, in the
net in Listing 6, the first addition result is net PS, which is latter used
by the other addition.

The net defined in Listing 4 is illustrated in Fig. 2a. As we defined an
empty fusion set (no node fusions), net addition becomes a disjoint union.
Note that, for presentation purposes, Fig. 2a shows the nodeIDs, while an
editor would show the respective text in each node’s name label.

8�9
:2;�<3= > ?
8�9
:�;�<-= @�A

8�9
:2;�<3= @	B
8�9
:2;�<3= :�C	9

D2E F(E

G�H�I3J(K�L�M�H#NPOQJ0R�S
I�H�M

T ;�:-U(C�V�<�;�= @�;�:3U-C	V�<

T ;�:3U(C�V�<�;�= @XW

T ;�:3U(C�V�<�;�= @	Y
T ;�:-U(C�V�<�;�= @�C	9

G�H�I3J3K�L�M�H�R�S
I2H�M

@�C	9
> ?T ;�:3U(C�V�<�;�= @�;�:3U-C	V�<

T ;�:-U(C�V�<�;�= @XW

T ;�:3U3C�V�<�;�= @�Y

8�9
:�;�<-= @�A

8�9
:2;�<3= @	B
8�9�:�;�<3= :�C�9

Figure 2: a)Net defined in Listing 4; b) Net defined in Listing 5.

Usually, net addition specifies fusion sets. After net union, some nodes are
fused according to the specified fusion sets. Listing 5 shows the specification
of the ProducerStore net. This is, again, the result from the addition of nets
Producer and Store but now the transitions Producer.put and Store.in are
fused. The result is shown in Fig. 2b 2. Notice the difference to net addition
without node fusion in Fig. 2a.

Listing 5: Net defined as an addition operation
<pnml xmlns=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pnml/ptNetb”>

<net id=”ProducerStore ”
type=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pntd/ptNetb”>

<ope ra t i on s>
5 <add i t i on r e s u l t=”return”>

<net netID=”Producer”/>

<net netID=”Store”/>

<merge>
<t r an s i t i onFu s i on nodeID=”putin”>

10 <t r a n s i t i o n netID=”Producer ” nodeID=”put”/>

<t r a n s i t i o n netID=”Store ” nodeID=”in”/>

</t r an s i t i onFu s i on>

</merge>
</add i t i on>

15 </ope ra t i on s>
</net>

</pnml>

Listing 6 defines a new net through the specification of two net addi-
tion operations. The first addition returns the net PS, a composition of net
Producer with three instances of net Store: for each value of i between 1

2The resulting net is shown only for illustration purposes as typically we do not want,
or need, a graphical representation.

and 3, the Producer.put transition is fused with transition Store[i].in, return-
ing a transition putin[i]. This is shown in Listing 6. Again for illustration
purposes, the resulting net (PS) is graphically shown in Fig. 3a.

Note the use of a fusion set vector (specified by the fusionSetVector ele-
ment).

The net PS is then composed with three instances of net Consumer, now
using an iterator over the Store[i].out nodes indexed by the respective net
instance index (the i in Store[i]). This returns the net PSC shown in Fig.
3b.

Listing 6: A net defined by two net additions.
<pnml xmlns=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pnml/ptNetb”>

<net id=”PSC” type=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pntd/ptNetb”>
<ope ra t i on s>

<add i t i on r e s u l t=”PS”>
5 <net netID=”Producer”/>

<netVector netID=”Store ” f i r s t =”1” l a s t =”3”/>

<merge>
<t r an s i t i onFus i onVec to r nodeID=”putin [i] ”

i t e r a t o r=” i ” f i r s t =”1” l a s t=”3”>

10 <t r a n s i t i o n netID=”Producer ” nodeID=”put”/>

<t r a n s i t i o n netID=”Store [i] ” nodeID=”in”/>

</t ran s i t i onFus i onVec to r>
</merge>

</add i t i on>

15 <add i t i on r e s u l t=”return”>
<net netID=”PS”/>

<netVector netID=”Consumer ” f i r s t =”1” l a s t =”3”/>

<merge>
<t r an s i t i onFus i onVec to r nodeID=”outget [i] ”

20 i t e r a t o r=” i ” f i r s t =”1” l a s t=”3”>

<t r a n s i t i o n netID=”PS” nodeID=”Store [i] . out”/>

<t r a n s i t i o n netID=”Consumer [i] ” nodeID=”get”/>

</t ran s i t i onFus i onVec to r>
</merge>

25 </add i t i on>

</ope ra t i on s>
</net>

</pnml>

Eventual modifications on the net labels in specific PNTDs must be known
by the tool handling the Operational PNML files. This includes, for example,
the resulting net marking after place fusion. More specifically, the tool should
provide a simple way for the PNTD designer to define the transformations on
each net label. For example, it should be possible to easily specify a marking
addition for interface places in net addition and a marking subtraction for
interface places in net subtraction. This reverse operation, is presented next

2.3.2 Net Subtraction

Net subtraction allows the removal of undesirable net parts. Inside a method-
ology based on iterative development, this modification also allows the re-

Z2[]\�^�_�`ba�[*c d�e

Z2[]\�^�_�`ba�[*cd�[]\�^�_�` a

Z�[]\�^�_�`ba�[*c d3f

g�h \�[]a�i f]j�c \�_�hd�_�h k l(i f
j

g�h \�[
a�i f
j c d�m

d�_�h k l(i e#j

d�_�h k l(i m#j

\�_�h n#a�h]i f
jZ(g2c d�_�h k l(i f
j

\�_�h n#a�h]i e#jZ(g2c d�_�h k l(i e#j

\�_�h n#a�h]i m#jZ3g-c d�_�h k l(i m#j

o�p q�p

g�h \�[
a�i f
j c d�r
g�h \�[
a�i e#j c d�m

g�h \�[
a�i e#j c d�r
g�h \�[
a�i m#j c d�m

g�h \�[
a�i m#j c d�r

Z(g2c g�h \�[]a�i f
j c d�m

Z3g-c g�h \�[
a�i f
j c d�r
Z3g-c g�h \�[
a�i e#j c d�m

Z3g-c g�h \�[
a�i e#j c d�r
Z3g-c g�h \�[
a�i m#j c d�m

Z3g-c g�h \�[]a�i m#j c d�r

s3\�l�tb_�u5a�[*i f
j�c d2v

s(\�l�tb_�u5a�[*i f
j c d�w

s(\�l�t]_�uXa�[*i f
j c h m

s(\�l�t]_�uXa�[*i f
j c h r

s(\�l�t]_�uXa�[*i f
j c d2x

s(\�l�tb_�u5a�[*i e#j c d2v

s(\�l�tb_�uXa�[*i e#j c d�w

s(\�l�tb_�u5a�[#i e#j c h m

s(\�l�tb_�u5a�[#i e#j c h r

s(\�l�tb_�u5a�[#i e#j c d�x

s(\�l�tb_�u5a�[*i m#j c d2v

s(\�l�tb_�uXa�[*i m#j c d�wys(\�l�tb_�u5a�[#i m#j c h r

s(\�l�tb_�u5a�[#i m#j c d�x

s(\�l�tb_�u5a�[#i m#j c h m

z5{ z5{}|

g�h \�[]a�i e#j c \�_�h

g#h \�[]a�i m#j c \�_�h

Z(g2c Z2[]\�^�_�`ba�[*cd�[]\�^�_�`�a

Z(g2c Z�[
\�^�_�`ba�[*c d3f

Z3g-c Z�[]\�^�_�`ba�[*c d�e

Figure 3: a)Net PS in Listing 6; b) Net in Listing 6.

placement of a specific part by newer or updated models. This reverse modi-
fication is potentially very useful: for example, given a net A to which we add
a net B, net subtraction allows the return to the initial net A, by subtracting
the net B. This is also the expected use for net subtraction.

Listing 7 defines a net by subtracting net Store from net ProducerStore.
This effectively undoes the previously presented addition (Listing 5): the
result (net Producer2 in Listing 7) is the same net as the Producer net (Fig.
1a), although with some distinct nodeIDs. Listing 7 also illustrates the use
of a transitionFusion containing a single transition. This effectively allows
the renaming of the referenced transition’s nodeID by the transitionFusion’s
nodeID.

Listing 7: Net defined as a subtraction operation
<pnml xmlns=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pnml/ptNetb”>

<net id=”Producer2”
type=”http ://www. in fo rmat ik . hu−b e r l i n . de/ top/pntd/ptNetb”>

<ope ra t i on s>
5 <sub t ra c t i on r e s u l t=”return”>

<net netID=”ProducerStore”/>

<net netID=”Store”/>

<merge>
<t r an s i t i onFu s i on nodeID=”put”>

10 <t r a n s i t i o n netID=”ProducerStore ” nodeID=”putin”/>

<t r a n s i t i o n netID=”Store ” nodeID=”in”/>

</t r an s i t i onFu s i on>

<t r an s i t i onFu s i on nodeID=”produce”>
<t r a n s i t i o n netID=”ProducerStore ” nodeID=”Producer . produce”/>

15 </t r an s i t i onFu s i on>

</merge>
<removal>

<placeFus ion nodeID=”p3”>
<p lace netID=”ProducerStore ” nodeID=”Store . p3”/>

20 <p lace netID=”Store ” nodeID=”p3”/>

</placeFus ion>

<placeFus ion nodeID=”p4”>
<p lace netID=”ProducerStore ” nodeID=”Store . p4”/>

<p lace netID=”Store ” nodeID=”p4”/>

25 </placeFus ion>

<t r an s i t i onFu s i on nodeID=”out”>
<t r a n s i t i o n netID=”ProducerStore ” nodeID=”Store . out”/>

<t r a n s i t i o n netID=”Store ” nodeID=”out”/>

</t r an s i t i onFu s i on>

30 </removal>
</subt ra c t i on>

</ope ra t i on s>
</net>

</pnml>

Net subtraction is simply net addition followed by the removal of a set of
nodes. The set of nodes to be removed are also specified by fusion sets, but
inside the removal element. Each arc connected to a node to be removed, is
also removed.

2.4 Operational PNML Grammar

The support for the presented net operations by the PNML grammar implies
one minimal modifications to the the basic PNML RELAX NG grammar: the
addition of an alternative to the net element content (define name=”net.con-
tent” in the RELAX NG grammar). Together with the net labels, we can
have either the usual net definitions, or the operations element. This extra
possibility is specified by the addition of a single < choice > pattern. The
new grammar is defined by merging it with the basic PNML grammar file
through the include mechanism in RELAX NG. Only net.element is overrid-
den with minimal modifications. All the remainder basic PNML grammar
remains the same.

The complete Operational PNML grammar in RELAX NG, specifying the
syntax for all the presented operations, is available at http://www.uninova.
pt/gres/opnml/. A sample script, allowing the translation from Operational
PNML to PNML, is also available, together with the presented examples.

3 Conclusion

The presented operations offer an alternative and generalised way to spec-
ify Petri net models. Their support by PNML does not imply any change
to the present PNML definition, as all the operations are readily definable

by an extended grammar, which still recognises all valid basic PNML files.
Also, the definition of an Operational Structured PNML and an Operational
Modular PNML seems straightforward. This would allow the use of opera-
tional definitions in an orthogonal way to the existent modular compositions.
This is particularly interesting for introducing modifications spanning several
existent modules.

It is perfectly possible to define other simpler and more primitive oper-
ations, like renaming of nets and nodes, and creation and removal of nodes
and arcs. All are potentially useful, but due to their unstructured nature,
great care must be taken to avoid unmanageable models.

Future work will generalise the presented Operational PNML semantics
to handle dependencies among the labels in the fused nodes and the respec-
tive arcs’ inscriptions. This is especially significant for some high-level nets’
classes where the modification of a node label can imply modifications to the
respective arcs’ inscriptions.

Acknowledgements The authors thank the two anonymous reviewers whose
comments helped to improve the paper significantly.

References

[1] João Paulo Barros and Lúıs Gomes. Modifying Petri net models by means of cross-
cutting operations. In Proceedings of the 3rd International Conference on Application
of Concurrency to System Design. IEEE Computer Society, jun 2003.

[2] João Paulo Barros and Lúıs Gomes. Net model composition and modification by
net operations: a pragmatic approach. In Proceedings of the 2nd IEEE International
Conference on Industrial Informatics (INDIN’04), Jun 2004. to appear.

[3] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler, Olaf Kum-
mer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The Petri
net markup language: Concepts, technology, and tools. In W. van der Aalst and
E. Best, editors, Proceeding of the 24th International Conference on Application and
Theory of Petri Nets, volume 2679 of LNCS, pages 483–505, Eindhoven, Holland,
jun 2003. Springer-Verlag.

[4] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and equiv-
alence preserving refinements of Petri nets. Lecture Notes in Computer Science;
Advances in Petri Nets 1990, 483:1–46, 1991.

[5] Peter Buchholz. Hierarchical high level Petri nets for complex system analysis. In
Valette, R., editor, Lecture Notes in Computer Science; Application and Theory of
Petri Nets 1994, Proceedings 15th International Conference, Zaragoza, Spain, volume
815, pages 119–138. Springer-Verlag, 1994.

[6] Søren Christensen and N. D. Hansen. Coloured Petri nets extended with channels
for synchronous communication. Daimi PB-390, 1992.

[7] Søren Christensen and Laure Petrucci. Modular analysis of Petri nets. Computer
Journal, 43(3):224–242, 2000.

[8] Rainer Fehling. A concept of hierarchical Petri nets with building blocks. In Proceed-
ings of the 12th International Conference on Application and Theory of Petri Nets,
1991, Gjern, Denmark, pages 370–389, June 1991.

[9] Lúıs Gomes and João Paulo Barros. On structuring mechanisms for Petri nets based
system design. In Proceedings of the 2003 IEEE Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2003), pages 431–438. IEEE Catalog Number:
03TH8696, sep 2003.

[10] Xudong He and John A. N. Lee. A methodology for constructing predicate transition
net specifications. Software–Practice and Experience, 21(8):845–875, August 1991.

[11] P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in coloured Petri nets. In
Proceedings of the 10th International Conference on Application and Theory of Petri
Nets, 1989, Bonn, Germany, pages 192–209, 1989.

[12] M. Jüngel, E. Kindler, and M. Weber. The Petri net markup language. In S. Phillipi,
editor, Workshop Algorithmen und Werkzeuge fr Petrinetze, oct 2000.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Akşit and Satoshi Matsuoka, editors, 11th European Conference on Object-Oriented
Programming, volume 1241 of LNCS, pages 220–242, Berlin, Heidelberg, and New
York, 1997. Springer Verlag.

[14] Ekkart Kindler and Michael Weber. A universal module concept for Petri nets. In
Proceedings des 8.Workshops Algorithmen und Werkzeuge fr Petrinetze / Gabriel
Juhas und Robert Lorenz (Hrsg.) – Katholischen Universität Eichstätt, 2001, pages
7–12, 1-2 October 2001.

[15] Julia Padberg. Petri net modules. Transactions of the SDPS, 6(3):121–196, sep 2002.

[16] Petri net markup language (PNML). http://www.informatik.hu-berlin.de/top/
pnml/about.html, 2004.

[17] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees
of separation: multi-dimensional separation of concerns. In Proceedings of the 21st
international conference on Software engineering, pages 107–119. IEEE Computer
Society Press, 1999.

[18] Michael Weber and Ekkart Kindler. The Petri net markup language. In H. Ehrig,

W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Technology for Com-

munication Based Systems, volume 2472 of LNCS, pages 124–144. Springer-Verlag,

2003.

